
[image: image1.png]

 [image: image2.png]

 [image: image3.png]

 [image: image4.png]

 Adlib Portfolio
 image plugin
[image: image5.png]dlib

an AXIELL product

Axiell ALM Netherlands BV
Copyright © 2013-2015 Axiell ALM Netherlands BV® All rights reserved. Adlib® is a product of Axiell ALM Netherlands BV®

The information in this document is subject to change without notice and should not be construed as a commitment by Axiell ALM Netherlands BV. Axiell assumes no responsibility for any errors that may appear in this document. The software described in this document is furnished under a licence and may be used or copied only in accordance with the terms of such a licence. While making every effort to ensure the accuracy of this document, products are continually being improved.

As a result of continuous improvements, later versions of the products may vary from those described here. Under no circumstances may this document be regarded as a part of any contractual obligation to supply software, or as a definitive product description.
Contents

1Introduction

31 Setup

31.1 Requirements

31.2 The Adlib image server configuration

61.3 The image fields setup

Introduction

This document describes the Adlib Portfolio plugin and its implementation.
The plugin is a .dll file that comes with the Adlib API (wwwopac.ashx and its accompanying files), which allows wwwopac.ashx to ingest and retrieve content (e.g. image files) into and from the Extensis Porfolio Server DAMS (Digital Asset Management System) through the Portfolio API.
While an Adlib application like Adlib Museum is primarly intended to catalogue the objects in your collection (along with a Visual documentation data source to register the images of those objects separately as well), it is not as effective in organizing, searching and presenting your images and other media files as a good DAMS is. In a media file rich environment, the two systems may therefore complement each other well, but only if a link between the two systems can be estabished, in the sense that:

· all existing images registered in the DAMS should be searchable and retrievable from within Adlib;

· any new image file to be linked to an object record in Adlib should automatically be ingested into the DAMS;

· when linking to any new or existing image registered in the DAMS, the catalogue id and asset/item id must be returned to Adlib and written to the relevant Adlib record to construct the actual link.
From the viewpoint of Extensis, Adlib is third-party software, and to allow third-party software access to the Portfolio Server functionality to search, retrieve, ingest and delete images, the server provides a Portfolio API. In turn, the primary Adlib software to communicate with the Portfolio API is the Adlib API using the plugin. The Adlib API, being an API, can in principle be addressed by multiple sources as well, like the Adlib Internet Server web application, by an Adlib for Windows application like Adlib Museum, or by custom third-party software. Although deletion of DAMS content is currently limited to direct Adlib API handling, which is not available through Adlib for Windows applications, accessing the Portfolio Server functionality by means of said windows applications is the main focus of the Adlib-Portfolio connection and of this document.
File update functionality is currently not part of this implementation. When linking an image in Adlib, only the image file and its name will be submitted to Portfolio, no other (meta)data will be ingested, and changing an image once it’s been linked to an Adlib record will probably be a rare occasion. The integration also offers no synchronization capabilities beyond the initial one when the media file is actually being linked by means of the asset id, but then: the Adlib Portfolio plugin is designed to offer both systems ingest and read access to the same pool of digital assets, it’s not meant as a real-time data integration tool. Therefore the connection between the two systems does not impose sharing of metadata other than the asset id of the media file and maybe the catalog id, while still allowing the freedom to map more metadata fields if desired.

1 Setup
1.1 Requirements

· One or more installed Adlib applications, to be able to register the objects from your collection. These applications can be installed using the general installation guide.
Note that the connection between Adlib and Porfolio is best made when you haven’t registered any records in Adlib yet: this allows every new reproduction to be linked to the DAMS record correctly. If your databases are already filled, you’ll probably need some conversion of your reproduction records before you can start making the connection with Portfolio. In that case, please contact the Adlib Helpdesk or the Sales department for more information, before you proceed.
· At least one installed Adlib API server (version 3.6.13262.1 or higher). You can extend an existing installation with an extra <imageServerConfiguration> section to address the plugin (and with it, the Portfolio API). See the Adlib API website for information about the general setup of an Adlib API server.
· For the current implementation, the Adlib Portfolio plugin is an essential addition to your Adlib API server.

· An installed Extensis Portfolio Server.
1.2 The Adlib image server configuration
In the adlibweb.xml file of the Adlib API server that you wish to use to communicate with the Portfolio server, the <imageServerConfiguration> must be adapted to include references to Portfolio, for example:
<imageServerConfiguration name="images">
 <servertype>FileSystem</servertype>
 <path></path>
 <cachePath>C:\Data\Adlib\ModelAppl4.2SQL\imageCache</cachePath>
 <ImagePlugin
 type="Adlib.Portfolio.Imaging.Plugin.PortfolioImagePlugin,
 PortfolioImagePlugin">
 <BaseUrl>http://server:8090/ws/1.0/AssetService?wsdl</BaseUrl>
 <UploadUrl>http://server:8090/FileTransfer/upload</UploadUrl>
 <AutosyncFolder>::Portfolio:adlib-files:</AutosyncFolder>
 <UserName>adlibsystem</UserName>
 <Password>ourdifficultpassword</Password>
 <Catalog>FE840E4-A642-324E-6B97-7B1C2FEEF97</Catalog>
 <Mappings>
 <Mapping Source="CatalogID">portfolio.catalogID</Mapping>
 <Mapping Source="RID">reference_number</Mapping>
 </Mappings>
 </ImagePlugin>

 <deleteAllowed>true</deleteAllowed>
</imageServerConfiguration>
For each catalog you wish to address, a separate <imageServerConfiguration> is required, so even if you address a single catalog, consider making a new, separate <imageServerConfiguration> for Portfolio, instead of adapting the <imageServerConfiguration> section already present in your adlibweb.xml file.

The plugin-specific settings are all contained in the <imagePlugin> sub section (except for the deleteAllowed property) and have the following meaning:

	Property
	Description

	BaseUrl
	must contain the URL to the Portfolio web service used to download images from Portfolio Server. Replace server:8090 by the relevant server name and port number, the rest of the path must always be: /ws/1.0/AssetService?wsdl

	UploadUrl
	must contain the URL to the Portfolio file transfer server used to upload images to Portfolio. Replace server:8090 by the relevant server name and port number, the rest of the path must always be: /FileTransfer/upload

	AutosyncFolder
	the auto sync folder as set in Portfolio and thus used by the file transfer server to put the uploaded images in. (The colons in the path represent backslashes.)

	UserName
	the user name to be used to log in to Portfolio.

	Password
	the password to be used to log in to Portfolio.

	Catalog
	a single catalog id used to store and retrieve images in and from Portfolio. This implies that an extra <imageServerConfiguration> section (with its own unique name) needs to be defined per catalog id.
The Adlib API should have ‘publisher’ access to this catalog.

	Mappings
	A list of field mappings from Portfolio metadata to Adlib fields. The <Mappings> node can contain one or more <Mapping> nodes, each <Mapping> node has a Source attribute containing the name of a metadata field in Portfolio, while the content of the node itself is the name of an Adlib field into which the retrieved metadata must be stored.
When a media file is ingested into the DAMS, Portfolio creates an asset/item id for it and may extract other metadata from the file itself to store together with the file reference in the DAMS record. Any mapped metadata is returned as Adlib XML after ingesting or retrieving a media file from within Adlib. Note that the mapping from RID to reference_number is required to be able to get the unique asset identifier from Portfolio into the Adlib record! The CatalogId is not mandatory, but when stored in the Adlib reproduction record as well, it enables the Adlib API to make a direct call to the Portfolio API for this asset.
Note that although it’s possible to map any field you like, these fields will only be copied to the Adlib record when the media file is being linked, afterwards there will never be any new synchronization should the DAMS record be updated. So, from that perpective it’s probably best to keep the mapping as limited as possible.

	deleteAllowed
	allows the Adlib API user to (attempt to) delete content from Portfolio and the file system (simultaneously), when set to true. The default value for this optional property is false.
This functionality has only been implemented in the Adlib Portfolio plugin, not in Adlib for Windows, so to delete content from the DAMS you would need a direct call to the Adlib API similar to: wwwopac.ashx?command=deletecontent&
server=images&value=530, in which server must reference the appropriate Adlib image server name and value the asset id.

See the online documentation for information about the standard options for the <imageServerConfiguration>.
1.3 The image fields setup
To make sure that media files linked in Adlib for Windows applications are forwarded to the DAMS and that the returned asset id is registered in the Adlib record as the reproduction reference of the media file, you will have to make a few simple settings for the reproduction.reference field (tag FN in current applications) in both the collect and photo database:
[image: image6.png]Field properties | Defaul values | Image properties | Muti language fields | Userinterface texts | Z39.50 Settings | Access rights |

Fie name
File name assigment type [From field contert v

Fil name generstion
Prefixstring

Start value o

Increment value o

Postristring

Number format string

Storage

Storage type

Storage path tp:/Aocalhost 50177 /wwopac ashTcommand=witecontentéserversimagesévalue="data’:

Retrieval path to:/Aocalhost 50177 wwiopac ashxPcommand=getcontentéserver=imagesimagefomat fpegévalue=Tdata’s

Thumbnail retrieval path tp://Aocalhost 50177/wopac ash7command=getcortentéserver-magesimagefomat fpegvaue="data idwidth="owidth dheight="height .

1. In Adlib Designer, open the photo database and select the reproduction.reference field.

2. Open the Image properties tab and for the Storage type and Retrieval type properties, select URL.

3. In Storage path, enter the URL to your Adlib API (wwwopac.ashx) server including the number of the port being used (for example: http://localhost:50177), followed by: ?command=writecontent
&server=<image_server_name>&value=%data%
Replace <image_server_name> by the name of the image server you set up.
4. In Retrieval path, enter the URL to your Adlib API (wwwopac.ashx) server including the number of the port being used (for example: http://localhost:50177), followed by: ?command=getcontent
&server=<image_server_name>&value=%data% which will retrieve images from Portfolio in their original file format: you can add &imageformat=jpeg to the URL to retrieve all images in .jpeg format.
Replace <image_server_name> by the name of the image server you set up.
5. In Thumbnail retrieval path, enter the URL to your Adlib API (wwwopac.ashx) server including the number of the port being used (for example: http://localhost:50177), followed by: ?command=getcontent&server=<image_server_name>&value
=%data%&width=%width%&height=%height% which will retrieve thumbnail images from Portfolio in their original file format but with thumbnail dimensions: you can add &imageformat=jpeg to the URL to retrieve all images in .jpeg format.
Replace <image_server_name> by the name of the image server you set up.
6. Repeat step 1 through 5 for the same field in the collect database.
After you link an image to an Adlib record, the image file will now be ingested into the Portfolio DAMS first, after which its Item ID will be returned and registered in the Adlib record as the Reproduction reference.

[image: image7.png]Download Batch Process Make P

C sortvy Fllename Ca

adi-assets -
B Alltems

B} Flagged Items

B Last Cataloged

[image: image8.png]Cataloged
osion

e
samspten
Chunges
o901
E—
aamssten
sis

256

[image: image9.png]Reproduction data

Identification
Reproduction reference

Format

Reproduction type
Copies
Technique
Location
Date
Descrptive elements of the reproduction
Title
Creator
Subject

Publisher
Contributor

Source
Coverage
Rights
Notes

E Media Viewer - 1 of 1
[homa T s [

imgé346.tmp

456%

30-7-2014

